Algorithmic Dimensions via Learning Functions

التفاصيل البيبلوغرافية
العنوان: Algorithmic Dimensions via Learning Functions
المؤلفون: Lutz, Jack H., Migunov, Andrei N.
سنة النشر: 2024
المجموعة: Computer Science
Mathematics
مصطلحات موضوعية: Computer Science - Information Theory
الوصف: We characterize the algorithmic dimensions (i.e., the lower and upper asymptotic densities of information) of infinite binary sequences in terms of the inability of learning functions having an algorithmic constraint to detect patterns in them. Our pattern detection criterion is a quantitative extension of the criterion that Zaffora Blando used to characterize the algorithmically random (i.e., Martin-L\"of random) sequences. Our proof uses Lutz's and Mayordomo's respective characterizations of algorithmic dimension in terms of gales and Kolmogorov complexity.
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2407.01747
رقم الانضمام: edsarx.2407.01747
قاعدة البيانات: arXiv