DiscoveryBench: Towards Data-Driven Discovery with Large Language Models

التفاصيل البيبلوغرافية
العنوان: DiscoveryBench: Towards Data-Driven Discovery with Large Language Models
المؤلفون: Majumder, Bodhisattwa Prasad, Surana, Harshit, Agarwal, Dhruv, Mishra, Bhavana Dalvi, Meena, Abhijeetsingh, Prakhar, Aryan, Vora, Tirth, Khot, Tushar, Sabharwal, Ashish, Clark, Peter
سنة النشر: 2024
المجموعة: Computer Science
مصطلحات موضوعية: Computer Science - Computation and Language, Computer Science - Artificial Intelligence, Computer Science - Machine Learning
الوصف: Can the rapid advances in code generation, function calling, and data analysis using large language models (LLMs) help automate the search and verification of hypotheses purely from a set of provided datasets? To evaluate this question, we present DiscoveryBench, the first comprehensive benchmark that formalizes the multi-step process of data-driven discovery. The benchmark is designed to systematically assess current model capabilities in discovery tasks and provide a useful resource for improving them. Our benchmark contains 264 tasks collected across 6 diverse domains, such as sociology and engineering, by manually deriving discovery workflows from published papers to approximate the real-world challenges faced by researchers, where each task is defined by a dataset, its metadata, and a discovery goal in natural language. We additionally provide 903 synthetic tasks to conduct controlled evaluations across task complexity. Furthermore, our structured formalism of data-driven discovery enables a facet-based evaluation that provides useful insights into different failure modes. We evaluate several popular LLM-based reasoning frameworks using both open and closed LLMs as baselines on DiscoveryBench and find that even the best system scores only 25%. Our benchmark, thus, illustrates the challenges in autonomous data-driven discovery and serves as a valuable resource for the community to make progress.
Comment: Website: https://github.com/allenai/discoverybench
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2407.01725
رقم الانضمام: edsarx.2407.01725
قاعدة البيانات: arXiv