Analytical exciton energies in monolayer transition-metal dichalcogenides

التفاصيل البيبلوغرافية
العنوان: Analytical exciton energies in monolayer transition-metal dichalcogenides
المؤلفون: Dinh, Hanh T., Phan, Ngoc-Hung, Ly, Duy-Nhat, Le, Dai-Nam, Hoang, Ngoc-Tram D., Nguyen, Nhat-Quang, Doan, Phuoc-Thien, Le, Van-Hoang
سنة النشر: 2024
المجموعة: Condensed Matter
مصطلحات موضوعية: Condensed Matter - Materials Science
الوصف: We derive an analytical expression for $s$-state exciton energies in monolayer transition-metal dichalcogenides (TMDCs): $E_{\text{ns}}=-{\text{Ry}}^*\times P_n/{(n-1/2+0.479\, r^*_0/\kappa)^2}$, $n=1,2,...$, where $r^*_0$ and $\kappa$ are the dimensionless screening length and dielectric constant of the surrounding medium; $\text{Ry}^*$ is an effective Rydberg energy scaled by the dielectric constant and exciton reduced mass; $P_n(r^*_0/\kappa)$ is a function of variables $n$ and $r^*_0/\kappa$. Its values are around 1.0 so we consider it a term that corrects the Rydberg energy. Despite the simple form, the suggested formula gives exciton energies with high precision compared to the exact numerical solutions that accurately describe recent experimental data for a large class of TMDC materials, including WSe$_2$, WS$_2$, MoSe$_2$, MoS$_2$, and MoTe$_2$. To achieve these results, we have developed a so-called regulated perturbation theory by combining the conventional perturbation method with several elements of the Feranchuk-Komarov operator method, including the Levi-Civita transformation, the algebraic calculation technique via the annihilation and creation operators, and the introduction of a free parameter to optimize the convergence rate of the perturbation series. This universal form of exciton energies could be helpful in various physical analyses, including retrieval of the material parameters such as reduced exciton mass and screening length from the available measured exciton energies.
Comment: 5 pages, 1 figure, 3 tables, 1 supplementary
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2407.01477
رقم الانضمام: edsarx.2407.01477
قاعدة البيانات: arXiv