Evaluation and Comparison of Emotionally Evocative Image Augmentation Methods

التفاصيل البيبلوغرافية
العنوان: Evaluation and Comparison of Emotionally Evocative Image Augmentation Methods
المؤلفون: Ignatowicz, Jan, Kutt, Krzysztof, Nalepa, Grzegorz J.
سنة النشر: 2024
المجموعة: Computer Science
مصطلحات موضوعية: Computer Science - Computer Vision and Pattern Recognition, Computer Science - Machine Learning
الوصف: Experiments in affective computing are based on stimulus datasets that, in the process of standardization, receive metadata describing which emotions each stimulus evokes. In this paper, we explore an approach to creating stimulus datasets for affective computing using generative adversarial networks (GANs). Traditional dataset preparation methods are costly and time consuming, prompting our investigation of alternatives. We conducted experiments with various GAN architectures, including Deep Convolutional GAN, Conditional GAN, Auxiliary Classifier GAN, Progressive Augmentation GAN, and Wasserstein GAN, alongside data augmentation and transfer learning techniques. Our findings highlight promising advances in the generation of emotionally evocative synthetic images, suggesting significant potential for future research and improvements in this domain.
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2406.16187
رقم الانضمام: edsarx.2406.16187
قاعدة البيانات: arXiv