Explicit realization of bounded modules for symplectic Lie algebras: spinor versus oscillator

التفاصيل البيبلوغرافية
العنوان: Explicit realization of bounded modules for symplectic Lie algebras: spinor versus oscillator
المؤلفون: Futorny, Vyacheslav, Grantcharov, Dimitar, Ramirez, Luis Enrique, Zadunaisky, Pablo
سنة النشر: 2024
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Representation Theory, 17B10, 16G99
الوصف: We provide an explicit combinatorial realization of all simple and injective (hence, and projective) modules in the category of bounded $\mathfrak{sp}(2n)$-modules. This realization is defined via a natural tableaux correspondence between spinor-type modules of $\mathfrak{so}(2n)$ and oscillator-type modules of $\mathfrak{sp}(2n)$. In particular, we show that, in contrast with the $A$-type case, the generic and bounded $\mathfrak{sp}(2n)$-modules admit an analog of the Gelfand-Graev continuation from finite-dimensional representations.
Comment: 24 pages, minor corrections made
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2406.15929
رقم الانضمام: edsarx.2406.15929
قاعدة البيانات: arXiv