Selecting Interpretability Techniques for Healthcare Machine Learning models

التفاصيل البيبلوغرافية
العنوان: Selecting Interpretability Techniques for Healthcare Machine Learning models
المؤلفون: Sierra-Botero, Daniel, Molina-Taborda, Ana, Valdés-Tresanco, Mario S., Hernández-Arango, Alejandro, Espinosa-Leal, Leonardo, Karpenko, Alexander, Lopez-Acevedo, Olga
سنة النشر: 2024
المجموعة: Computer Science
مصطلحات موضوعية: Computer Science - Machine Learning
الوصف: In healthcare there is a pursuit for employing interpretable algorithms to assist healthcare professionals in several decision scenarios. Following the Predictive, Descriptive and Relevant (PDR) framework, the definition of interpretable machine learning as a machine-learning model that explicitly and in a simple frame determines relationships either contained in data or learned by the model that are relevant for its functioning and the categorization of models by post-hoc, acquiring interpretability after training, or model-based, being intrinsically embedded in the algorithm design. We overview a selection of eight algorithms, both post-hoc and model-based, that can be used for such purposes.
Comment: 26 pages, 5 figures
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2406.10213
رقم الانضمام: edsarx.2406.10213
قاعدة البيانات: arXiv