Operator Theory on the Pentablock

التفاصيل البيبلوغرافية
العنوان: Operator Theory on the Pentablock
المؤلفون: Jindal, Abhay, Kumar, Poornendu
المصدر: J. Math. Anal. Appl. (2024), 128589
سنة النشر: 2024
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Functional Analysis, 47A13, 47A15, 47A20, 47A25, 93B50, 46L05
الوصف: The pentablock, denoted as $\cP,$ is defined as follows: $$\cP= \left\{ (a_{21}, {\rm tr}(A), {\rm det}(A)) : A = [a_{ij}]_{2 \times 2} \text{ with } \|A\|<1 \right\}.$$ It originated from the work of Agler--Lykova--Young in connection with a particular case of the $\mu$-synthesis problem. It is a non-convex, polynomially convex, $\mathbb{C}$-convex, star-like about the origin, and inhomogeneous domain. This paper deals with operator theory on the pentablock. We study pentablock unitaries and isometries, providing an algebraic characterization of pentablock isometries. En route, we provide the Wold-type decomposition for pentablock isometries, which consists of three parts: the unitary part, the pure part, and a new component. We define this novel component as the quasi-pentablock unitary and provide a functional model for it. Additionally, a model for a class of pure pentablock isometries has been found, along with some examples. Furthermore, a representation resembling the Beurling-Lax-Halmos paradigm has been presented for the invariant subspaces of pentablock pure isometries.
نوع الوثيقة: Working Paper
DOI: 10.1016/j.jmaa.2024.128589
URL الوصول: http://arxiv.org/abs/2406.05996
رقم الانضمام: edsarx.2406.05996
قاعدة البيانات: arXiv
الوصف
DOI:10.1016/j.jmaa.2024.128589