Transfer Learning Approach for Railway Technical Map (RTM) Component Identification

التفاصيل البيبلوغرافية
العنوان: Transfer Learning Approach for Railway Technical Map (RTM) Component Identification
المؤلفون: Rumalshan, Obadage Rochana, Weerasinghe, Pramuka, Shaheer, Mohamed, Gunathilake, Prabhath, Dayaratna, Erunika
المصدر: Lecture Notes in Networks and Systems: 465 (2022) 479-488
سنة النشر: 2024
المجموعة: Computer Science
مصطلحات موضوعية: Computer Science - Computer Vision and Pattern Recognition, Computer Science - Artificial Intelligence, Computer Science - Digital Libraries
الوصف: The extreme popularity over the years for railway transportation urges the necessity to maintain efficient railway management systems around the globe. Even though, at present, there exist a large collection of Computer Aided Designed Railway Technical Maps (RTMs) but available only in the portable document format (PDF). Using Deep Learning and Optical Character Recognition techniques, this research work proposes a generic system to digitize the relevant map component data from a given input image and create a formatted text file per image. Out of YOLOv3, SSD and Faster-RCNN object detection models used, Faster-RCNN yields the highest mean Average Precision (mAP) and the highest F1 score values 0.68 and 0.76 respectively. Further it is proven from the results obtained that, one can improve the results with OCR when the text containing image is being sent through a sophisticated pre-processing pipeline to remove distortions.
Comment: 9 pages, 8 figures
نوع الوثيقة: Working Paper
DOI: 10.1007/978-981-19-2397-5_44
URL الوصول: http://arxiv.org/abs/2405.13229
رقم الانضمام: edsarx.2405.13229
قاعدة البيانات: arXiv
الوصف
DOI:10.1007/978-981-19-2397-5_44