Torus knots and generalized Schr\'oder paths

التفاصيل البيبلوغرافية
العنوان: Torus knots and generalized Schr\'oder paths
المؤلفون: Stošić, Marko, Sułkowski, Piotr
سنة النشر: 2024
المجموعة: Mathematics
High Energy Physics - Theory
مصطلحات موضوعية: High Energy Physics - Theory, Mathematics - Combinatorics, Mathematics - Quantum Algebra
الوصف: We relate invariants of torus knots to the counts of a class of lattice paths, which we call generalized Schr\"oder paths. We determine generating functions of such paths, located in a region determined by a type of a torus knot under consideration, and show that they encode colored HOMFLY-PT polynomials of this knot. The generators of uncolored HOMFLY-PT homology correspond to a basic set of such paths. Invoking the knots-quivers correspondence, we express generating functions of such paths as quiver generating series, and also relate them to quadruply-graded knot homology. Furthermore, we determine corresponding A-polynomials, which provide algebraic equations and recursion relations for generating functions of generalized Schr\"oder paths. The lattice paths of our interest explicitly enumerate BPS states associated to knots via brane constructions.
Comment: 33 pages, 7 figures
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2405.10161
رقم الانضمام: edsarx.2405.10161
قاعدة البيانات: arXiv