Unbounded $\mathfrak{sl}_3$-laminations around punctures

التفاصيل البيبلوغرافية
العنوان: Unbounded $\mathfrak{sl}_3$-laminations around punctures
المؤلفون: Ishibashi, Tsukasa, Kano, Shunsuke
سنة النشر: 2024
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Representation Theory, Mathematics - Geometric Topology, Mathematics - Quantum Algebra
الوصف: We continue to study the unbounded $\mathfrak{sl}_3$-laminations [IK22], with a focus on their structures at punctures. A key ingredient is their relation to the root data of $\mathfrak{sl}_3$. After giving a classification of signed $\mathfrak{sl}_3$-webs around a puncture, we describe the tropicalization of the Goncharov--Shen's Weyl group action in detail. We also clarify the relationship with several other approaches by Shen--Sun--Weng [SSW23] and Fraser--Pylyavskyy [FP21]. Finally, we discuss a formulation of unbounded $\mathfrak{g}$-laminations for a general semisimple Lie algebra $\mathfrak{g}$ in brief.
Comment: 57 pages, 26 figures. v2: added a comment on the Roger--Yang relations in p.42. arXiv admin note: text overlap with arXiv:2204.08947
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2404.18236
رقم الانضمام: edsarx.2404.18236
قاعدة البيانات: arXiv