rFaceNet: An End-to-End Network for Enhanced Physiological Signal Extraction through Identity-Specific Facial Contours

التفاصيل البيبلوغرافية
العنوان: rFaceNet: An End-to-End Network for Enhanced Physiological Signal Extraction through Identity-Specific Facial Contours
المؤلفون: Zhu, Dali, Zhang, Wenli, Zeng, Hualin, Liu, Xiaohao, Yang, Long, Zheng, Jiaqi
سنة النشر: 2024
المجموعة: Computer Science
مصطلحات موضوعية: Computer Science - Computer Vision and Pattern Recognition
الوصف: Remote photoplethysmography (rPPG) technique extracts blood volume pulse (BVP) signals from subtle pixel changes in video frames. This study introduces rFaceNet, an advanced rPPG method that enhances the extraction of facial BVP signals with a focus on facial contours. rFaceNet integrates identity-specific facial contour information and eliminates redundant data. It efficiently extracts facial contours from temporally normalized frame inputs through a Temporal Compressor Unit (TCU) and steers the model focus to relevant facial regions by using the Cross-Task Feature Combiner (CTFC). Through elaborate training, the quality and interpretability of facial physiological signals extracted by rFaceNet are greatly improved compared to previous methods. Moreover, our novel approach demonstrates superior performance than SOTA methods in various heart rate estimation benchmarks.
Comment: under-review
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2403.09034
رقم الانضمام: edsarx.2403.09034
قاعدة البيانات: arXiv