On semidefinite descriptions for convex hulls of quadratic programs

التفاصيل البيبلوغرافية
العنوان: On semidefinite descriptions for convex hulls of quadratic programs
المؤلفون: Wang, Alex L., Kilinc-Karzan, Fatma
سنة النشر: 2024
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Optimization and Control
الوصف: Quadratically constrained quadratic programs (QCQPs) are a highly expressive class of nonconvex optimization problems. While QCQPs are NP-hard in general, they admit a natural convex relaxation via the standard semidefinite program (SDP) relaxation. In this paper we study when the convex hull of the epigraph of a QCQP coincides with the projected epigraph of the SDP relaxation. We present a sufficient condition for convex hull exactness and show that this condition is further necessary under an additional geometric assumption. The sufficient condition is based on geometric properties of $\Gamma$, the cone of convex Lagrange multipliers, and its relatives $\Gamma_1$ and $\Gamma^\circ$.
Comment: This paper is a significant rewrite of arXiv:2011.07155 [math.OC] and contains both new content and rewritten content
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2403.04752
رقم الانضمام: edsarx.2403.04752
قاعدة البيانات: arXiv