Scaling Limit of Kuramoto Model on Random Geometric Graphs

التفاصيل البيبلوغرافية
العنوان: Scaling Limit of Kuramoto Model on Random Geometric Graphs
المؤلفون: Cirelli, Francisco, Groisman, Pablo, Huang, Ruojun, Vivas, Hernán
سنة النشر: 2024
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Probability, Mathematics - Analysis of PDEs
الوصف: We consider the Kuramoto model on a graph with nodes given by $n$ i.i.d. points uniformly distributed on the $d$ dimensional torus. Two nodes are declared neighbors if they are at distance less than $\epsilon$. We prove a scaling limit for this model in compact time intervals as $n\to\infty$ and $\epsilon \to 0$ such that $\epsilon^{d+2}n/\log n \to \infty$. The limiting object is given by the heat equation. On the one hand this shows that the nonlinearity given by the sine function disappears under this scaling and on the other hand, provides evidence that stable equilibria of the Kuramoto model on these graphs are, as $n\to\infty$, in correspondence with those of the heat equation, which are explicit and given by twisted states. In view of this, we conjecture the existence of twisted stable equilibria with high probability as $n\to \infty$.
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2402.15311
رقم الانضمام: edsarx.2402.15311
قاعدة البيانات: arXiv