Diffusion Processes on $p$-Wasserstein Space over Banach Space

التفاصيل البيبلوغرافية
العنوان: Diffusion Processes on $p$-Wasserstein Space over Banach Space
المؤلفون: Ren, Panpan, Wang, Feng-Yu, Wittmann, Simon
سنة النشر: 2024
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Probability, 60J60, 60J25, 60J46, 47D07, 60G57, 60J45
الوصف: To study diffusion processes on the $p$-Wasserstein space $\scr P_p $ for $p\in [1,\infty)$ over a separable, reflexive Banach space $X$, we present a criterion on the quasi-regularity of Dirichlet forms in $L^2(\scr P_p,\Lambda)$ for a reference probability $\Lambda$ on $\scr P_p$. It is formulated in terms of an upper bound condition with the uniform norm of the intrinsic derivative. The condition is easy to check in relevant applications and allows to construct a type of Ornstein-Uhlenbeck process on $\scr P_p$. We find a versatile class of quasi-regular local Dirichlet forms on $\scr P_p$ by using images of Dirichlet forms on the tangent space $L^p(X\to X,\mu_0)$ at a reference point $\mu_0\in \scr P_p$. The Ornstein-Uhlenbeck type Dirichlet form is an important example in this class. An $L^2$-estimate for the corresponding heat kernel is derived, based on the eigenvalues of the covariance operator of the underlying Gaussian measure.
Comment: Acknowledgments added; Application of Sect. 3.2 revised; Typos corrected
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2402.15130
رقم الانضمام: edsarx.2402.15130
قاعدة البيانات: arXiv