The Banach-Tarski paradox for some subsets of finite-dimensional normed spaces over non-Archimedean valued fields

التفاصيل البيبلوغرافية
العنوان: The Banach-Tarski paradox for some subsets of finite-dimensional normed spaces over non-Archimedean valued fields
المؤلفون: Orzechowski, Kamil
سنة النشر: 2024
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Functional Analysis, Mathematics - Group Theory, Mathematics - Representation Theory, Primary 47S10, Secondary 46S10, 12J25, 26E30, 20E05, 20H20, 46B04, 05A18, 03E25
الوصف: We show some results related to the classical Banach-Tarski paradox in the setting of finite-dimensional normed spaces over a non-Archimedean valued field $K$. For instance, all balls and spheres in $K^n$, and the whole space $K^n$ (for $n\ge 2$) are paradoxical with respect to certain groups of isometries of $K^n$. If $K$ is locally compact (e.g., $K$ is the field $\mathbb{Q}_p$ of $p$-adic numbers for any prime number $p$), any two bounded subsets of $K^n$ with nonempty interiors are equidecomposable (and paradoxical) with respect to a certain group of isometries of $K^n$ (for $n\ge 2$).
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2402.14772
رقم الانضمام: edsarx.2402.14772
قاعدة البيانات: arXiv