التفاصيل البيبلوغرافية
العنوان: |
Uniform bounds for bilinear symbols with linear K-quasiconformally embedded singularity |
المؤلفون: |
Fraccaroli, Marco, Saari, Olli, Thiele, Christoph |
سنة النشر: |
2024 |
المجموعة: |
Mathematics |
مصطلحات موضوعية: |
Mathematics - Classical Analysis and ODEs |
الوصف: |
We prove bounds in the strict local $L^{2}(\mathbb{R}^{d})$ range for trilinear Fourier multiplier forms with a $d$-dimensional singular subspace. Given a fixed parameter $K \ge 1$, we treat multipliers with non-degenerate singularity that are push-forwards by $K$-quasiconformal matrices of suitable symbols. As particular applications, our result recovers the uniform bounds for the one-dimensional bilinear Hilbert transforms in the strict local $L^{2}$ range, and it implies the uniform bounds for two-dimensional bilinear Beurling transforms, which are new, in the same range. |
نوع الوثيقة: |
Working Paper |
URL الوصول: |
http://arxiv.org/abs/2402.11661 |
رقم الانضمام: |
edsarx.2402.11661 |
قاعدة البيانات: |
arXiv |