Uniform bounds for bilinear symbols with linear K-quasiconformally embedded singularity

التفاصيل البيبلوغرافية
العنوان: Uniform bounds for bilinear symbols with linear K-quasiconformally embedded singularity
المؤلفون: Fraccaroli, Marco, Saari, Olli, Thiele, Christoph
سنة النشر: 2024
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Classical Analysis and ODEs
الوصف: We prove bounds in the strict local $L^{2}(\mathbb{R}^{d})$ range for trilinear Fourier multiplier forms with a $d$-dimensional singular subspace. Given a fixed parameter $K \ge 1$, we treat multipliers with non-degenerate singularity that are push-forwards by $K$-quasiconformal matrices of suitable symbols. As particular applications, our result recovers the uniform bounds for the one-dimensional bilinear Hilbert transforms in the strict local $L^{2}$ range, and it implies the uniform bounds for two-dimensional bilinear Beurling transforms, which are new, in the same range.
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2402.11661
رقم الانضمام: edsarx.2402.11661
قاعدة البيانات: arXiv