Strong Hamel functions and symmetries

التفاصيل البيبلوغرافية
العنوان: Strong Hamel functions and symmetries
المؤلفون: Bucataru, Ioan, Cretu, Georgeta
سنة النشر: 2024
المجموعة: Mathematics
Mathematical Physics
مصطلحات موضوعية: Mathematics - Differential Geometry, Mathematical Physics, 53C60, 53B40, 37C79, 37K06, 70H33
الوصف: A strong Hamel function is a Hamel function that is the geodesic derivative of some 0-homogeneous function. We prove that strong Hamel functions induce dual symmetries and dynamical symmetries and provide the conditions such that these symmetries are induced by strong Hamel functions. We show that projective deformations by strong Hamel functions preserve the $\chi$-curvature and analyse the relationship with some other functions (Funk and weak Funk functions) preserving curvature tensors under projective deformations. In the flat case, any Hamel function is a strong Hamel function.
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2402.09791
رقم الانضمام: edsarx.2402.09791
قاعدة البيانات: arXiv