Report
Distribution-uniform strong laws of large numbers
العنوان: | Distribution-uniform strong laws of large numbers |
---|---|
المؤلفون: | Waudby-Smith, Ian, Larsson, Martin, Ramdas, Aaditya |
سنة النشر: | 2024 |
المجموعة: | Mathematics Statistics |
مصطلحات موضوعية: | Mathematics - Probability, Mathematics - Statistics Theory |
الوصف: | We revisit the question of whether the strong law of large numbers (SLLN) holds uniformly in a rich family of distributions, culminating in a distribution-uniform generalization of the Marcinkiewicz-Zygmund SLLN. These results can be viewed as extensions of Chung's distribution-uniform SLLN to random variables with uniformly integrable $q^\text{th}$ absolute central moments for $0 < q < 2$. Furthermore, we show that uniform integrability of the $q^\text{th}$ moment is both sufficient and necessary for the SLLN to hold uniformly at the Marcinkiewicz-Zygmund rate of $n^{1/q - 1}$. These proofs centrally rely on novel distribution-uniform analogues of some familiar almost sure convergence results including the Khintchine-Kolmogorov convergence theorem, Kolmogorov's three-series theorem, a stochastic generalization of Kronecker's lemma, and the Borel-Cantelli lemmas. We also consider the non-identically distributed case. Comment: 32 pages |
نوع الوثيقة: | Working Paper |
URL الوصول: | http://arxiv.org/abs/2402.00713 |
رقم الانضمام: | edsarx.2402.00713 |
قاعدة البيانات: | arXiv |
الوصف غير متاح. |