Enumerating hyperelliptic curves over finite fields in quasilinear time

التفاصيل البيبلوغرافية
العنوان: Enumerating hyperelliptic curves over finite fields in quasilinear time
المؤلفون: Howe, Everett W.
سنة النشر: 2024
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Number Theory, 11G20 (Primary) 11Y16, 14G15, 14H10, 14H25 (Secondary)
الوصف: We present an algorithm that, for every fixed genus $g$, will enumerate all hyperelliptic curves of genus $g$ over a finite field $k$ of odd characteristic in quasilinear time; that is, the time required for the algorithm is $\widetilde{O}(q^{2g-1})$, where $q=\#k$. Such an algorithm already exists in the case $g=2$, thanks to work of Mestre and Cardona and Quer, and in the case $g=3$, thanks to work of Lercier and Ritzenthaler. Experimentally, it appears that our new algorithm is about two orders of magnitude faster in practice than ones based on their work.
Comment: 23 pages. Corrected small typos, added a reference to a paper of Nart, and added links to Internet Archive library copies of two books
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2401.15255
رقم الانضمام: edsarx.2401.15255
قاعدة البيانات: arXiv