LYT-NET: Lightweight YUV Transformer-based Network for Low-light Image Enhancement

التفاصيل البيبلوغرافية
العنوان: LYT-NET: Lightweight YUV Transformer-based Network for Low-light Image Enhancement
المؤلفون: Brateanu, A., Balmez, R., Avram, A., Orhei, C., Ancuti, C.
سنة النشر: 2024
المجموعة: Computer Science
مصطلحات موضوعية: Computer Science - Computer Vision and Pattern Recognition, Electrical Engineering and Systems Science - Image and Video Processing
الوصف: This letter introduces LYT-Net, a novel lightweight transformer-based model for low-light image enhancement (LLIE). LYT-Net consists of several layers and detachable blocks, including our novel blocks--Channel-Wise Denoiser (CWD) and Multi-Stage Squeeze & Excite Fusion (MSEF)--along with the traditional Transformer block, Multi-Headed Self-Attention (MHSA). In our method we adopt a dual-path approach, treating chrominance channels U and V and luminance channel Y as separate entities to help the model better handle illumination adjustment and corruption restoration. Our comprehensive evaluation on established LLIE datasets demonstrates that, despite its low complexity, our model outperforms recent LLIE methods. The source code and pre-trained models are available at https://github.com/albrateanu/LYT-Net
Comment: 5 pages
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2401.15204
رقم الانضمام: edsarx.2401.15204
قاعدة البيانات: arXiv