Report
A hierarchy of WZW models related to super Poisson-Lie T-duality
العنوان: | A hierarchy of WZW models related to super Poisson-Lie T-duality |
---|---|
المؤلفون: | Eghbali, Ali, Rezaei-Aghdam, Adel |
المصدر: | Eur. Phys. J. C (2024) 84:931 |
سنة النشر: | 2024 |
المجموعة: | High Energy Physics - Theory |
مصطلحات موضوعية: | High Energy Physics - Theory |
الوصف: | Motivated by super Poisson-Lie (PL) symmetry of the Wess-Zumino-Witten (WZW) model based on the $(C^3+A)$ Lie supergroup of our previous work [A. Eghbali {\it et al.} JHEP 07 (2013) 134], we first obtain and classify all Drinfeld superdoubles (DSDs) generated by the Lie superbialgebra structures on the $({\cal C}^3+ {\cal A})$ Lie superalgebra as a theorem. Then, introducing a general formulation we find the conditions under which a two-dimensional $\sigma$-model may be equivalent to a WZW model. With the help of this formulation and starting the super PL symmetric $(C^3+A)$ WZW model, we get a hierarchy of WZW models related to super PL T-duality, in such a way that it is different from the super PL T-plurality, because the DSDs are, in this process, non-isomorphic. The most interesting indication of this work is that the $(C^3+A)$ WZW model does remain invariant under the super PL T-duality transformation, that is, the model is super PL self-dual. Comment: 27 pages, 1 table, 1 figure, 1 appendix, v3 minor changes |
نوع الوثيقة: | Working Paper |
DOI: | 10.1140/epjc/s10052-024-13297-1 |
URL الوصول: | http://arxiv.org/abs/2401.09636 |
رقم الانضمام: | edsarx.2401.09636 |
قاعدة البيانات: | arXiv |
DOI: | 10.1140/epjc/s10052-024-13297-1 |
---|