Testing Sumsets is Hard

التفاصيل البيبلوغرافية
العنوان: Testing Sumsets is Hard
المؤلفون: Chen, Xi, Nadimpalli, Shivam, Randolph, Tim, Servedio, Rocco A., Zamir, Or
سنة النشر: 2024
المجموعة: Computer Science
Mathematics
مصطلحات موضوعية: Computer Science - Data Structures and Algorithms, Computer Science - Computational Complexity, Mathematics - Combinatorics
الوصف: A subset $S$ of the Boolean hypercube $\mathbb{F}_2^n$ is a sumset if $S = \{a + b : a, b\in A\}$ for some $A \subseteq \mathbb{F}_2^n$. Sumsets are central objects of study in additive combinatorics, featuring in several influential results. We prove a lower bound of $\Omega(2^{n/2})$ for the number of queries needed to test whether a Boolean function $f:\mathbb{F}_2^n \to \{0,1\}$ is the indicator function of a sumset. Our lower bound for testing sumsets follows from sharp bounds on the related problem of shift testing, which may be of independent interest. We also give a near-optimal $2^{n/2} \cdot \mathrm{poly}(n)$-query algorithm for a smoothed analysis formulation of the sumset refutation problem.
Comment: 18 pages
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2401.07242
رقم الانضمام: edsarx.2401.07242
قاعدة البيانات: arXiv