Report
Non-Fermi liquid fixed point of the dissipative Yukawa-Sachdev-Ye-Kitaev model
العنوان: | Non-Fermi liquid fixed point of the dissipative Yukawa-Sachdev-Ye-Kitaev model |
---|---|
المؤلفون: | Cichutek, Niklas, Rückriegel, Andreas, Kopietz, Peter |
المصدر: | Phys. Rev. B 109, 155101 (2024) |
سنة النشر: | 2023 |
المجموعة: | Condensed Matter |
مصطلحات موضوعية: | Condensed Matter - Strongly Correlated Electrons |
الوصف: | Using a functional renormalization group approach we derive the renormalization group (RG) flow of a dissipative variant of the Yukawa-Sachdev-Ye-Kitaev model describing $N$ fermions on a quantum dot which interact via a disorder-induced Yukawa coupling with $M$ bosons. The inverse Euclidean propagator of the bosons is assumed to exhibit a non-analytic term proportional to the modulus of the Matsubara frequency. We show that, to leading order in $1/N$ and $1/M$, the hierarchy of formally exact flow equations for the irreducible vertices of the disorder-averaged model can be closed at the level of the two-point vertices. We find that the RG flow exhibits a non-Fermi liquid fixed point characterized by a finite fermionic anomalous dimension $\eta$ which is related to the bosonic anomalous dimension $\gamma$ via the scaling law $2 = 2 \eta + \gamma$ with $ 0 < \eta < 1/2$. We explicitly calculate $\eta$ and the critical exponents characterizing the linearized RG flow in the vicinity of the fixed point as functions of $N/M$. Comment: 17 pages, 9 figures |
نوع الوثيقة: | Working Paper |
DOI: | 10.1103/PhysRevB.109.155101 |
URL الوصول: | http://arxiv.org/abs/2312.14026 |
رقم الانضمام: | edsarx.2312.14026 |
قاعدة البيانات: | arXiv |
DOI: | 10.1103/PhysRevB.109.155101 |
---|