Fair Clustering: A Causal Perspective

التفاصيل البيبلوغرافية
العنوان: Fair Clustering: A Causal Perspective
المؤلفون: Bayer, Fritz, Plecko, Drago, Beerenwinkel, Niko, Kuipers, Jack
سنة النشر: 2023
المجموعة: Computer Science
Statistics
مصطلحات موضوعية: Statistics - Machine Learning, Computer Science - Computers and Society, Computer Science - Machine Learning
الوصف: Clustering algorithms may unintentionally propagate or intensify existing disparities, leading to unfair representations or biased decision-making. Current fair clustering methods rely on notions of fairness that do not capture any information on the underlying causal mechanisms. We show that optimising for non-causal fairness notions can paradoxically induce direct discriminatory effects from a causal standpoint. We present a clustering approach that incorporates causal fairness metrics to provide a more nuanced approach to fairness in unsupervised learning. Our approach enables the specification of the causal fairness metrics that should be minimised. We demonstrate the efficacy of our methodology using datasets known to harbour unfair biases.
Comment: 14 pages
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2312.09061
رقم الانضمام: edsarx.2312.09061
قاعدة البيانات: arXiv