Khovanov algebras for the periplectic Lie superalgebras

التفاصيل البيبلوغرافية
العنوان: Khovanov algebras for the periplectic Lie superalgebras
المؤلفون: Nehme, Jonas
المصدر: Int. Math. Res. Notices , Vol. 2024, No. 22
سنة النشر: 2023
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Representation Theory, Mathematics - Quantum Algebra, 17B10
الوصف: The periplectic Lie superalgebra $\mathfrak{p}(n)$ is one of the most mysterious and least understood simple classical Lie superalgebras with reductive even part. We approach the study of its finite dimensional representation theory in terms of Schur--Weyl duality. We provide an idempotent version of its centralizer, i.e. the super Brauer algebra. We use this to describe explicitly the endomorphism ring of a projective generator for $\mathfrak{p}(n)$ resembling the Khovanov algebra of [BS11a]. We also give a diagrammatic description of the translation functors from [BDE19] in terms of certain bimodules and study their effect on projective, standard, costandard and irreducible modules. These results will be used to classify irreducible summands in $V^{\otimes d}$, compute $\mathrm{Ext}^1$ between irreducible modules and show that $\mathfrak{p}(n)$-mod does not admit a Koszul grading.
نوع الوثيقة: Working Paper
DOI: 10.1093/imrn/rnae230
URL الوصول: http://arxiv.org/abs/2312.08390
رقم الانضمام: edsarx.2312.08390
قاعدة البيانات: arXiv