Learning Genomic Sequence Representations using Graph Neural Networks over De Bruijn Graphs

التفاصيل البيبلوغرافية
العنوان: Learning Genomic Sequence Representations using Graph Neural Networks over De Bruijn Graphs
المؤلفون: Kapuśniak, Kacper, Burger, Manuel, Rätsch, Gunnar, Joudaki, Amir
سنة النشر: 2023
المجموعة: Computer Science
Quantitative Biology
مصطلحات موضوعية: Computer Science - Machine Learning, Quantitative Biology - Genomics
الوصف: The rapid expansion of genomic sequence data calls for new methods to achieve robust sequence representations. Existing techniques often neglect intricate structural details, emphasizing mainly contextual information. To address this, we developed k-mer embeddings that merge contextual and structural string information by enhancing De Bruijn graphs with structural similarity connections. Subsequently, we crafted a self-supervised method based on Contrastive Learning that employs a heterogeneous Graph Convolutional Network encoder and constructs positive pairs based on node similarities. Our embeddings consistently outperform prior techniques for Edit Distance Approximation and Closest String Retrieval tasks.
Comment: Poster at "NeurIPS 2023 New Frontiers in Graph Learning Workshop (NeurIPS GLFrontiers 2023)"
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2312.03865
رقم الانضمام: edsarx.2312.03865
قاعدة البيانات: arXiv