Universal quadratic forms and Dedekind zeta functions

التفاصيل البيبلوغرافية
العنوان: Universal quadratic forms and Dedekind zeta functions
المؤلفون: Kala, Vítězslav, Melistas, Mentzelos
سنة النشر: 2023
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Number Theory, 11E12, 11E20, 11H06
الوصف: We study universal quadratic forms over totally real number fields using Dedekind zeta functions. In particular, we prove an explicit upper bound for the rank of universal quadratic forms over a given number field $K$, under the assumption that the codifferent of $K$ is generated by a totally positive element. Motivated by a possible path to remove that assumption, we also investigate the smallest number of generators for the positive part of ideals in totally real numbers fields.
Comment: 12 pages. Preprint
نوع الوثيقة: Working Paper
DOI: 10.1142/S1793042124500908
URL الوصول: http://arxiv.org/abs/2311.12911
رقم الانضمام: edsarx.2311.12911
قاعدة البيانات: arXiv
الوصف
DOI:10.1142/S1793042124500908