Report
Universal quadratic forms and Dedekind zeta functions
العنوان: | Universal quadratic forms and Dedekind zeta functions |
---|---|
المؤلفون: | Kala, Vítězslav, Melistas, Mentzelos |
سنة النشر: | 2023 |
المجموعة: | Mathematics |
مصطلحات موضوعية: | Mathematics - Number Theory, 11E12, 11E20, 11H06 |
الوصف: | We study universal quadratic forms over totally real number fields using Dedekind zeta functions. In particular, we prove an explicit upper bound for the rank of universal quadratic forms over a given number field $K$, under the assumption that the codifferent of $K$ is generated by a totally positive element. Motivated by a possible path to remove that assumption, we also investigate the smallest number of generators for the positive part of ideals in totally real numbers fields. Comment: 12 pages. Preprint |
نوع الوثيقة: | Working Paper |
DOI: | 10.1142/S1793042124500908 |
URL الوصول: | http://arxiv.org/abs/2311.12911 |
رقم الانضمام: | edsarx.2311.12911 |
قاعدة البيانات: | arXiv |
DOI: | 10.1142/S1793042124500908 |
---|