Existence of very weak solutions to nonlinear elliptic equation with nonstandard growth and global weighted gradient estimates

التفاصيل البيبلوغرافية
العنوان: Existence of very weak solutions to nonlinear elliptic equation with nonstandard growth and global weighted gradient estimates
المؤلفون: Byun, Sun-Sig, Lim, Minkyu
سنة النشر: 2023
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Analysis of PDEs
الوصف: We study a general class of quasilinear elliptic equations with nonstandard growth to prove the existence of a very weak solution to such a problem. A key ingredient in the proof is a priori global weighted gradient estimate of a very weak solution, where the right hand side of the equation is the divergence of a vector-valued function with low degree of integrability. To obtain this estimate, we adopt a notion of reverse H\"older class of Muckenhoupt weights. Another crucial part of the proof is a generalized weighted div-curl lemma in the setting of Orlicz spaces.
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2311.11479
رقم الانضمام: edsarx.2311.11479
قاعدة البيانات: arXiv