GroupMixer: Patch-based Group Convolutional Neural Network for Breast Cancer Detection from Histopathological Images

التفاصيل البيبلوغرافية
العنوان: GroupMixer: Patch-based Group Convolutional Neural Network for Breast Cancer Detection from Histopathological Images
المؤلفون: Modarres, Ardavan, Esfahani, Erfan Ebrahim, Bahrami, Mahsa
سنة النشر: 2023
المجموعة: Computer Science
مصطلحات موضوعية: Electrical Engineering and Systems Science - Image and Video Processing, Computer Science - Computer Vision and Pattern Recognition, Computer Science - Machine Learning
الوصف: Diagnosis of breast cancer malignancy at the early stages is a crucial step for controlling its side effects. Histopathological analysis provides a unique opportunity for malignant breast cancer detection. However, such a task would be tedious and time-consuming for the histopathologists. Deep Neural Networks enable us to learn informative features directly from raw histopathological images without manual feature extraction. Although Convolutional Neural Networks (CNNs) have been the dominant architectures in the computer vision realm, Transformer-based architectures have shown promising results in different computer vision tasks. Although harnessing the capability of Transformer-based architectures for medical image analysis seems interesting, these architectures are large, have a significant number of trainable parameters, and require large datasets to be trained on, which are usually rare in the medical domain. It has been claimed and empirically proved that at least part of the superior performance of Transformer-based architectures in Computer Vision domain originates from patch embedding operation. In this paper, we borrowed the previously introduced idea of integrating a fully Convolutional Neural Network architecture with Patch Embedding operation and presented an efficient CNN architecture for breast cancer malignancy detection from histopathological images. Despite the number of parameters that is significantly smaller than other methods, the accuracy performance metrics achieved 97.65%, 98.92%, 99.21%, and 98.01% for 40x, 100x, 200x, and 400x magnifications respectively. We took a step forward and modified the architecture using Group Convolution and Channel Shuffling ideas and reduced the number of trainable parameters even more with a negligible decline in performance and achieved 95.42%, 98.16%, 96.05%, and 97.92% accuracy for the mentioned magnifications respectively.
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2311.09846
رقم الانضمام: edsarx.2311.09846
قاعدة البيانات: arXiv