Evolving Horizons in Radiotherapy Auto-Contouring: Distilling Insights, Embracing Data-Centric Frameworks, and Moving Beyond Geometric Quantification

التفاصيل البيبلوغرافية
العنوان: Evolving Horizons in Radiotherapy Auto-Contouring: Distilling Insights, Embracing Data-Centric Frameworks, and Moving Beyond Geometric Quantification
المؤلفون: Wahid, Kareem A., Cardenas, Carlos E., Marquez, Barbara, Netherton, Tucker J., Kann, Benjamin H., Court, Laurence E., He, Renjie, Naser, Mohamed A., Moreno, Amy C., Fuller, Clifton D., Fuentes, David
سنة النشر: 2023
المجموعة: Physics (Other)
مصطلحات موضوعية: Physics - Medical Physics
الوصف: Deep learning has significantly advanced the potential for automated contouring in radiotherapy planning. In this manuscript, guided by contemporary literature, we underscore three key insights: (1) High-quality training data is essential for auto-contouring algorithms; (2) Auto-contouring models demonstrate commendable performance even with limited medical image data; (3) The quantitative performance of auto-contouring is reaching a plateau. Given these insights, we emphasize the need for the radiotherapy research community to embrace data-centric approaches to further foster clinical adoption of auto-contouring technologies.
Comment: 13 pages, 4 figures
نوع الوثيقة: Working Paper
DOI: 10.1016/j.adro.2024.101521
URL الوصول: http://arxiv.org/abs/2310.10867
رقم الانضمام: edsarx.2310.10867
قاعدة البيانات: arXiv
الوصف
DOI:10.1016/j.adro.2024.101521