Spectral gap and embedded trees for the Laplacian of the Erd\H{o}s-R\'enyi graph

التفاصيل البيبلوغرافية
العنوان: Spectral gap and embedded trees for the Laplacian of the Erd\H{o}s-R\'enyi graph
المؤلفون: Ducatez, Raphael, Rivier, Renaud
سنة النشر: 2023
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Probability
الوصف: For the Erd\H{o}s-R\'enyi graph of size $N$ with mean degree $(1+o(1))\frac{\log N}{t+1}\leq d\leq(1-o(1))\frac{\log N}{t}$ where $t\in\mathbb{N}^{*}$, with high probability the smallest non zero eigenvalue of the Laplacian is equal to $2-2\cos(\pi(2t+1)^{-1})+o(1)$. This eigenvalue arises from a small subgraph isomorphic to a line of size $t$ linked to the giant connected component by only one edge.
Comment: 22 pages, 4 figures
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2309.17292
رقم الانضمام: edsarx.2309.17292
قاعدة البيانات: arXiv