Data-driven input-to-state stabilization with respect to measurement errors

التفاصيل البيبلوغرافية
العنوان: Data-driven input-to-state stabilization with respect to measurement errors
المؤلفون: Chen, Hailong, Bisoffi, Andrea, De Persis, Claudio
سنة النشر: 2023
المجموعة: Computer Science
Mathematics
مصطلحات موضوعية: Electrical Engineering and Systems Science - Systems and Control, Mathematics - Dynamical Systems, Mathematics - Optimization and Control
الوصف: We consider noisy input/state data collected from an experiment on a polynomial input-affine nonlinear system. Motivated by event-triggered control, we provide data-based conditions for input-to-state stability with respect to measurement errors. Such conditions, which take into account all dynamics consistent with data, lead to the design of a feedback controller, an ISS Lyapunov function, and comparison functions ensuring ISS with respect to measurement errors. When solved alternately for two subsets of the decision variables, these conditions become a convex sum-of-squares program. Feasibility of the program is illustrated with a numerical example.
Comment: Submitted for peer review on 31 March 2023. To appear in the Proceedings of the 62nd IEEE Conference on Decision and Control, 13-15 December 2023, Singapore
نوع الوثيقة: Working Paper
DOI: 10.1109/CDC49753.2023.10383880
URL الوصول: http://arxiv.org/abs/2309.09050
رقم الانضمام: edsarx.2309.09050
قاعدة البيانات: arXiv
الوصف
DOI:10.1109/CDC49753.2023.10383880