Report
Resurgent large genus asymptotics of intersection numbers
العنوان: | Resurgent large genus asymptotics of intersection numbers |
---|---|
المؤلفون: | Eynard, Bertrand, Garcia-Failde, Elba, Giacchetto, Alessandro, Gregori, Paolo, Lewański, Danilo |
سنة النشر: | 2023 |
المجموعة: | Mathematics Mathematical Physics |
مصطلحات موضوعية: | Mathematics - Algebraic Geometry, Mathematical Physics, Mathematics - Geometric Topology, 14H10, 14H70 (Primary) 37K20, 05A16 (Secondary) |
الوصف: | In this paper, we present a novel approach for computing the large genus asymptotics of intersection numbers. Our strategy is based on a resurgent analysis of the $n$-point functions of such intersection numbers, which are computed via determinantal formulae, and relies on the presence of a quantum curve. With this approach, we are able to extend the recent results of Aggarwal for Witten-Kontsevich intersection numbers with the computation of all subleading corrections, proving a conjecture of Guo-Yang, and to obtain new results on $r$-spin and Theta-class intersection numbers. Comment: 47 pages, 7 figures |
نوع الوثيقة: | Working Paper |
URL الوصول: | http://arxiv.org/abs/2309.03143 |
رقم الانضمام: | edsarx.2309.03143 |
قاعدة البيانات: | arXiv |
الوصف غير متاح. |