Local $h^*$-polynomials for one-row Hermite normal form simplices

التفاصيل البيبلوغرافية
العنوان: Local $h^*$-polynomials for one-row Hermite normal form simplices
المؤلفون: Bajo, Esme, Braun, Benjamin, Codenotti, Giulia, Hofscheier, Johannes, Vindas-Meléndez, Andrés R.
سنة النشر: 2023
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Combinatorics
الوصف: The local $h^*$-polynomial of a lattice polytope is an important invariant arising in Ehrhart theory. Our focus is on lattice simplices presented in Hermite normal form with a single non-trivial row. We prove that when the off-diagonal entries are fixed, the distribution of coefficients for the local $h^*$-polynomial of these simplices has a limit as the normalized volume goes to infinity. Further, this limiting distribution is determined by the coefficients for a particular choice of normalized volume. We also provide an analysis of two specific families of such simplices to illustrate and motivate our main result.
Comment: minor edits
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2309.01186
رقم الانضمام: edsarx.2309.01186
قاعدة البيانات: arXiv