Report
Local $h^*$-polynomials for one-row Hermite normal form simplices
العنوان: | Local $h^*$-polynomials for one-row Hermite normal form simplices |
---|---|
المؤلفون: | Bajo, Esme, Braun, Benjamin, Codenotti, Giulia, Hofscheier, Johannes, Vindas-Meléndez, Andrés R. |
سنة النشر: | 2023 |
المجموعة: | Mathematics |
مصطلحات موضوعية: | Mathematics - Combinatorics |
الوصف: | The local $h^*$-polynomial of a lattice polytope is an important invariant arising in Ehrhart theory. Our focus is on lattice simplices presented in Hermite normal form with a single non-trivial row. We prove that when the off-diagonal entries are fixed, the distribution of coefficients for the local $h^*$-polynomial of these simplices has a limit as the normalized volume goes to infinity. Further, this limiting distribution is determined by the coefficients for a particular choice of normalized volume. We also provide an analysis of two specific families of such simplices to illustrate and motivate our main result. Comment: minor edits |
نوع الوثيقة: | Working Paper |
URL الوصول: | http://arxiv.org/abs/2309.01186 |
رقم الانضمام: | edsarx.2309.01186 |
قاعدة البيانات: | arXiv |
الوصف غير متاح. |