Machine learning density functionals from the random-phase approximation

التفاصيل البيبلوغرافية
العنوان: Machine learning density functionals from the random-phase approximation
المؤلفون: Riemelmoser, Stefan, Verdi, Carla, Kaltak, Merzuk, Kresse, Georg
المصدر: Journal of Chemical Theory and Computation 2023 19 (20), 7287-7299
سنة النشر: 2023
المجموعة: Condensed Matter
Physics (Other)
مصطلحات موضوعية: Condensed Matter - Materials Science, Physics - Chemical Physics
الوصف: Kohn-Sham density functional theory (DFT) is the standard method for first-principles calculations in computational chemistry and materials science. More accurate theories such as the random-phase approximation (RPA) are limited in application due to their large computational cost. Here, we construct a DFT substitute functional for the RPA using supervised and unsupervised machine learning (ML) techniques. Our ML-RPA model can be interpreted as a non-local extension to the standard gradient approximation. We train an ML-RPA functional for diamond surfaces and liquid water and show that ML-RPA can outperform the standard gradient functionals in terms of accuracy. Our work demonstrates how ML-RPA can extend the applicability of the RPA to larger system sizes, time scales and chemical spaces.
نوع الوثيقة: Working Paper
DOI: 10.1021/acs.jctc.3c00848
URL الوصول: http://arxiv.org/abs/2308.00665
رقم الانضمام: edsarx.2308.00665
قاعدة البيانات: arXiv
الوصف
DOI:10.1021/acs.jctc.3c00848