Report
Maximum values of the edge Mostar index in tricyclic graphs
العنوان: | Maximum values of the edge Mostar index in tricyclic graphs |
---|---|
المؤلفون: | Hayat, Fazal, Xu, Shou-Jun, Zhou, Bo |
سنة النشر: | 2023 |
المجموعة: | Mathematics |
مصطلحات موضوعية: | Mathematics - Combinatorics, 05C12, 05C35, 05C38 |
الوصف: | For a graph $G$, the edge Mostar index of $G$ is the sum of $|m_u(e|G)-m_v(e|G)|$ over all edges $e=uv$ of $G$, where $m_u(e|G)$ denotes the number of edges of $G$ that have a smaller distance in $G$ to $u$ than to $v$, and analogously for $m_v(e|G)$. This paper mainly studies the problem of determining the graphs that maximize the edge Mostar index among tricyclic graphs. To be specific, we determine a sharp upper bound for the edge Mostar index on tricyclic graphs and identify the graphs that attain the bound. Comment: arXiv admin note: substantial text overlap with arXiv:2306.02761 |
نوع الوثيقة: | Working Paper |
URL الوصول: | http://arxiv.org/abs/2307.04735 |
رقم الانضمام: | edsarx.2307.04735 |
قاعدة البيانات: | arXiv |
الوصف غير متاح. |