Principal Component Analysis and Hidden Markov Model for Forecasting Stock Returns

التفاصيل البيبلوغرافية
العنوان: Principal Component Analysis and Hidden Markov Model for Forecasting Stock Returns
المؤلفون: Park, Eugene W.
سنة النشر: 2023
المجموعة: Mathematics
Quantitative Finance
مصطلحات موضوعية: Quantitative Finance - Statistical Finance, Mathematics - Probability, Quantitative Finance - Portfolio Management
الوصف: This paper presents a method for predicting stock returns using principal component analysis (PCA) and the hidden Markov model (HMM) and tests the results of trading stocks based on this approach. Principal component analysis is applied to the covariance matrix of stock returns for companies listed in the S&P 500 index, and interpreting principal components as factor returns, we apply the HMM model on them. Then we use the transition probability matrix and state conditional means to forecast the factors returns. Reverting the factor returns forecasts to stock returns using eigenvectors, we obtain forecasts for the stock returns. We find that, with the right hyperparameters, our model yields a strategy that outperforms the buy-and-hold strategy in terms of the annualized Sharpe ratio.
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2307.00459
رقم الانضمام: edsarx.2307.00459
قاعدة البيانات: arXiv