Semiparametric posterior corrections

التفاصيل البيبلوغرافية
العنوان: Semiparametric posterior corrections
المؤلفون: Yiu, Andrew, Fong, Edwin, Holmes, Chris, Rousseau, Judith
سنة النشر: 2023
المجموعة: Mathematics
Statistics
مصطلحات موضوعية: Statistics - Methodology, Mathematics - Statistics Theory
الوصف: We present a new approach to semiparametric inference using corrected posterior distributions. The method allows us to leverage the adaptivity, regularization and predictive power of nonparametric Bayesian procedures to estimate low-dimensional functionals of interest without being restricted by the holistic Bayesian formalism. Starting from a conventional nonparametric posterior, we target the functional of interest by transforming the entire distribution with a Bayesian bootstrap correction. We provide conditions for the resulting $\textit{one-step posterior}$ to possess calibrated frequentist properties and specialize the results for several canonical examples: the integrated squared density, the mean of a missing-at-random outcome, and the average causal treatment effect on the treated. The procedure is computationally attractive, requiring only a simple, efficient post-processing step that can be attached onto any arbitrary posterior sampling algorithm. Using the ACIC 2016 causal data analysis competition, we illustrate that our approach can outperform the existing state-of-the-art through the propagation of Bayesian uncertainty.
Comment: 53 pages
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2306.06059
رقم الانضمام: edsarx.2306.06059
قاعدة البيانات: arXiv