Report
Approximate Exponential Integrators for Time-Dependent Equation-of-Motion Coupled Cluster Theory
العنوان: | Approximate Exponential Integrators for Time-Dependent Equation-of-Motion Coupled Cluster Theory |
---|---|
المؤلفون: | Williams-Young, David B., Yuwono, Stephen, DePrince III, A. Eugene, Yang, Chao |
سنة النشر: | 2023 |
المجموعة: | Physics (Other) |
مصطلحات موضوعية: | Physics - Chemical Physics |
الوصف: | With growing demand for time-domain simulations of correlated many-body systems, the development of efficient and stable integration schemes for the time-dependent Schr\"odinger equation is of keen interest in modern electronic structure theory. In the present work, we present two novel approaches for the formation of the quantum propagator for time-dependent equation-of-motion coupled cluster theory (TD-EOM-CC) based on the Chebyshev and Arnoldi expansions of the complex, non-hermitian matrix exponential, respectively. The proposed algorithms are compared with the short-iterative Lanczos method of Cooper, et al [J. Phys. Chem. A. 2021 125, 5438-5447], the fourth-order Runge-Kutta method (RK4), and exact dynamics for a set of small but challenging test problems. For each of the cases studied, both of the proposed integration schemes demonstrate superior accuracy and efficiency relative to the reference simulations. Comment: 28 pages, 4 figures |
نوع الوثيقة: | Working Paper |
URL الوصول: | http://arxiv.org/abs/2305.07592 |
رقم الانضمام: | edsarx.2305.07592 |
قاعدة البيانات: | arXiv |
الوصف غير متاح. |