Partial separability and symplectic-Haantjes manifolds

التفاصيل البيبلوغرافية
العنوان: Partial separability and symplectic-Haantjes manifolds
المؤلفون: Reyes, Daniel, Tempesta, Piergiulio, Tondo, Giorgio
المصدر: Annali di Matematica Pura e Applicata (2024), published online
سنة النشر: 2023
المجموعة: Mathematics
Mathematical Physics
مصطلحات موضوعية: Mathematical Physics, Mathematics - Symplectic Geometry, 37J35, 53A45, 70H20
الوصف: A theory of partial separability for classical Hamiltonian systems is proposed in the context of Haantjes geometry. As a general result, we show that the knowledge of a non-semisimple symplectic-Haantjes manifold for a given Hamiltonian system is sufficient to construct sets of coordinates (called Darboux-Haantjes coordinates) which allow both the partial separability of the associated Hamilton-Jacobi equations and the block-diagonalization of the operators of the corresponding Haantjes algebra. We also introduce a novel class of Hamiltonian systems, characterized by the existence of a generalized St\"ackel matrix, which by construction are partially separable. They widely generalize the known families of partially separable Hamiltonian systems. Our systems can be described in terms of semisimple but non-maximal-rank symplectic-Haantjes manifolds.
Comment: 31 pages
نوع الوثيقة: Working Paper
DOI: 10.1007/s10231-024-01462-y
URL الوصول: http://arxiv.org/abs/2305.06844
رقم الانضمام: edsarx.2305.06844
قاعدة البيانات: arXiv
الوصف
DOI:10.1007/s10231-024-01462-y