التفاصيل البيبلوغرافية
العنوان: |
Local systems and Suzuki groups |
المؤلفون: |
Alpoge, L., Katz, N. M., Navarro, G., O'Brien, E. A., Tiep, P. H. |
سنة النشر: |
2023 |
المجموعة: |
Mathematics |
مصطلحات موضوعية: |
Mathematics - Algebraic Geometry, Mathematics - Number Theory, Primary 11T23, Secondary 20C15, 20C33, 20D06, 20G05 |
الوصف: |
We study geometric monodromy groups $G_{\geo,\sF_q}$ of the local systems $\sF_q$ on the affine line over $\F_2$ of rank $D=\sqrt{q}(q-1)$, $q=2^{2n+1}$, constructed in \cite{Ka-ERS}. The main result of the paper shows that $G_{\geo,\sF_q}$ is either the Suzuki simple group $\tw2 B_2(q)$, or the special linear group $\SL_D$. We also show that $\sF_8$ has geometric monodromy group $\tw2B_2(8)$, and arithmetic monodromy group $\Aut(\tw2 B_2(8))$ over $\F_2$, thus establishing \cite[Conjecture 2.2]{Ka-ERS} in full in the case $q=8$. |
نوع الوثيقة: |
Working Paper |
URL الوصول: |
http://arxiv.org/abs/2305.03168 |
رقم الانضمام: |
edsarx.2305.03168 |
قاعدة البيانات: |
arXiv |