pyPESTO: A modular and scalable tool for parameter estimation for dynamic models

التفاصيل البيبلوغرافية
العنوان: pyPESTO: A modular and scalable tool for parameter estimation for dynamic models
المؤلفون: Schälte, Yannik, Fröhlich, Fabian, Jost, Paul J., Vanhoefer, Jakob, Pathirana, Dilan, Stapor, Paul, Lakrisenko, Polina, Wang, Dantong, Raimúndez, Elba, Merkt, Simon, Schmiester, Leonard, Städter, Philipp, Grein, Stephan, Dudkin, Erika, Doresic, Domagoj, Weindl, Daniel, Hasenauer, Jan
سنة النشر: 2023
المجموعة: Quantitative Biology
Statistics
مصطلحات موضوعية: Quantitative Biology - Quantitative Methods, Statistics - Computation
الوصف: Mechanistic models are important tools to describe and understand biological processes. However, they typically rely on unknown parameters, the estimation of which can be challenging for large and complex systems. We present pyPESTO, a modular framework for systematic parameter estimation, with scalable algorithms for optimization and uncertainty quantification. While tailored to ordinary differential equation problems, pyPESTO is broadly applicable to black-box parameter estimation problems. Besides own implementations, it provides a unified interface to various popular simulation and inference methods. pyPESTO is implemented in Python, open-source under a 3-Clause BSD license. Code and documentation are available on GitHub (https://github.com/icb-dcm/pypesto).
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2305.01821
رقم الانضمام: edsarx.2305.01821
قاعدة البيانات: arXiv