Report
Semi-Equivariant Conditional Normalizing Flows
العنوان: | Semi-Equivariant Conditional Normalizing Flows |
---|---|
المؤلفون: | Rozenberg, Eyal, Freedman, Daniel |
سنة النشر: | 2023 |
المجموعة: | Computer Science Physics (Other) Quantitative Biology |
مصطلحات موضوعية: | Computer Science - Machine Learning, Physics - Biological Physics, Quantitative Biology - Biomolecules |
الوصف: | We study the problem of learning conditional distributions of the form $p(G | \hat G)$, where $G$ and $\hat G$ are two 3D graphs, using continuous normalizing flows. We derive a semi-equivariance condition on the flow which ensures that conditional invariance to rigid motions holds. We demonstrate the effectiveness of the technique in the molecular setting of receptor-aware ligand generation. Comment: ICLR Physics for Machine Learning (Physics4ML) Workshop 2023. arXiv admin note: substantial text overlap with arXiv:2211.04754 |
نوع الوثيقة: | Working Paper |
URL الوصول: | http://arxiv.org/abs/2304.06779 |
رقم الانضمام: | edsarx.2304.06779 |
قاعدة البيانات: | arXiv |
الوصف غير متاح. |