Semi-Equivariant Conditional Normalizing Flows

التفاصيل البيبلوغرافية
العنوان: Semi-Equivariant Conditional Normalizing Flows
المؤلفون: Rozenberg, Eyal, Freedman, Daniel
سنة النشر: 2023
المجموعة: Computer Science
Physics (Other)
Quantitative Biology
مصطلحات موضوعية: Computer Science - Machine Learning, Physics - Biological Physics, Quantitative Biology - Biomolecules
الوصف: We study the problem of learning conditional distributions of the form $p(G | \hat G)$, where $G$ and $\hat G$ are two 3D graphs, using continuous normalizing flows. We derive a semi-equivariance condition on the flow which ensures that conditional invariance to rigid motions holds. We demonstrate the effectiveness of the technique in the molecular setting of receptor-aware ligand generation.
Comment: ICLR Physics for Machine Learning (Physics4ML) Workshop 2023. arXiv admin note: substantial text overlap with arXiv:2211.04754
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2304.06779
رقم الانضمام: edsarx.2304.06779
قاعدة البيانات: arXiv