Report
Character sheaves on tori over local fields
العنوان: | Character sheaves on tori over local fields |
---|---|
المؤلفون: | Deshpande, Tanmay, Wagh, Saniya |
سنة النشر: | 2023 |
المجموعة: | Mathematics |
مصطلحات موضوعية: | Mathematics - Representation Theory, Mathematics - Number Theory, 20C |
الوصف: | Let $\breve{K}$ be a complete discrete valuation field with an algebraically closed residue field ${k}$ and ring of integers $\breve{{O}}$. Let $T$ be a torus defined over $\breve{K}$. Let $L^+T$ denote the connected commutative pro-algebraic group over ${k}$ obtained by applying the Greenberg functor to the connected N\'eron model of $T$ over $\breve{{O}}$. Following the work of Serre for the multiplicative group, we first compute the fundamental group $\pi_1(L^+T)$. We then study multiplicative local systems (or character sheaves) on $L^+T$ and establish a local Langlands correspondence for them. Namely, we construct a canonical isomorphism of abelian groups between the group of multiplicative local systems on $L^+T$ and inertial local Langlands parameters for $T$. Finally, we relate our results to the classical local Langlands correspondence for tori over local fields due to Langlands, via the sheaf-function correspondence. Comment: 32 pages |
نوع الوثيقة: | Working Paper |
URL الوصول: | http://arxiv.org/abs/2304.06622 |
رقم الانضمام: | edsarx.2304.06622 |
قاعدة البيانات: | arXiv |
الوصف غير متاح. |