Gaussian holomorphic sections on noncompact complex manifolds

التفاصيل البيبلوغرافية
العنوان: Gaussian holomorphic sections on noncompact complex manifolds
المؤلفون: Drewitz, Alexander, Liu, Bingxiao, Marinescu, George
سنة النشر: 2023
المجموعة: Mathematics
Mathematical Physics
مصطلحات موضوعية: Mathematics - Complex Variables, Mathematical Physics, Mathematics - Probability, 32A60, 60D05, 32U40, 60B12, 53D50
الوصف: We give two constructions of Gaussian-like random holomorphic sections of a Hermitian holomorphic line bundle $(L,h_{L})$ on a Hermitian complex manifold $(X,\Theta)$. In particular, we are interested in the case where the space of $\mathcal{L}^2$-holomorphic sections $H^{0}_{(2)}(X,L)$ is infinite dimensional. We first provide a general construction of Gaussian random holomorphic sections of $L$, which, if $\dim H^{0}_{(2)}(X,L)=\infty$, are almost never $\mathcal{L}^2$-integrable on $X$. The second construction combines the abstract Wiener space theory with the Berezin-Toeplitz quantization and yields a random $\mathcal{L}^2$-holomorphic section. Furthermore, we study their random zeros in the context of semiclassical limits, including their equidistribution, large deviation estimates and hole probabilities.
Comment: 47 pages
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2302.08426
رقم الانضمام: edsarx.2302.08426
قاعدة البيانات: arXiv