Higher-order chain rules for tensor fields, generalized Bell polynomials, and estimates in Orlicz-Sobolev-Slobodeckij and bounded variation spaces

التفاصيل البيبلوغرافية
العنوان: Higher-order chain rules for tensor fields, generalized Bell polynomials, and estimates in Orlicz-Sobolev-Slobodeckij and bounded variation spaces
المؤلفون: Licht, Martin W.
سنة النشر: 2022
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Functional Analysis, 26B12 (Primary), 05A17, 26B30, 46E35, 49Q15 (Secondary)
الوصف: We describe higher-order chain rules for multivariate functions and tensor fields. We estimate Sobolev-Slobodeckij norms, Musielak-Orlicz norms, and the total variation seminorms of the higher derivatives of tensor fields after a change of variables and determine sufficient regularity conditions for the coordinate change. We also introduce a novel higher-order chain rule for composition chains of multivariate functions that is described via nested set partitions and generalized Bell polynomials; it is a natural extension of the Fa\`a di Bruno formula. Our discussion uses the coordinate-free language of tensor calculus and includes Fr\'echet-differentiable mappings between Banach spaces.
Comment: Submitted
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2212.11893
رقم الانضمام: edsarx.2212.11893
قاعدة البيانات: arXiv