Benchmarking Large Language Models for Automated Verilog RTL Code Generation

التفاصيل البيبلوغرافية
العنوان: Benchmarking Large Language Models for Automated Verilog RTL Code Generation
المؤلفون: Thakur, Shailja, Ahmad, Baleegh, Fan, Zhenxing, Pearce, Hammond, Tan, Benjamin, Karri, Ramesh, Dolan-Gavitt, Brendan, Garg, Siddharth
سنة النشر: 2022
المجموعة: Computer Science
مصطلحات موضوعية: Computer Science - Programming Languages, Computer Science - Machine Learning, Computer Science - Software Engineering
الوصف: Automating hardware design could obviate a significant amount of human error from the engineering process and lead to fewer errors. Verilog is a popular hardware description language to model and design digital systems, thus generating Verilog code is a critical first step. Emerging large language models (LLMs) are able to write high-quality code in other programming languages. In this paper, we characterize the ability of LLMs to generate useful Verilog. For this, we fine-tune pre-trained LLMs on Verilog datasets collected from GitHub and Verilog textbooks. We construct an evaluation framework comprising test-benches for functional analysis and a flow to test the syntax of Verilog code generated in response to problems of varying difficulty. Our findings show that across our problem scenarios, the fine-tuning results in LLMs more capable of producing syntactically correct code (25.9% overall). Further, when analyzing functional correctness, a fine-tuned open-source CodeGen LLM can outperform the state-of-the-art commercial Codex LLM (6.5% overall). Training/evaluation scripts and LLM checkpoints are available: https://github.com/shailja-thakur/VGen.
Comment: Accepted in DATE 2023. 7 pages, 4 tables, 7 figures
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2212.11140
رقم الانضمام: edsarx.2212.11140
قاعدة البيانات: arXiv