Asymptotics of Discrete $q$-Freud $\mathrm{II}$ orthogonal polynomials from the $q$-Riemann Hilbert Problem

التفاصيل البيبلوغرافية
العنوان: Asymptotics of Discrete $q$-Freud $\mathrm{II}$ orthogonal polynomials from the $q$-Riemann Hilbert Problem
المؤلفون: Joshi, Nalini, Latimer, Tomas Lasic
المصدر: Nonlinearity 36.3969 (2023)
سنة النشر: 2022
المجموعة: Mathematics
Mathematical Physics
مصطلحات موضوعية: Mathematics - Classical Analysis and ODEs, Mathematical Physics
الوصف: We investigate a Riemann-Hilbert problem (RHP), whose solution corresponds to a group of $q$-orthogonal polynomials studied earlier by Ismail et al. Using RHP theory we determine new asymptotic results in the limit as the degree of the polynomials approach infinity. The RHP formulation also enables us to obtain further properties. In particular, we consider how the class of polynomials and their asymptotic behaviours change under translations of the $q$-discrete lattice and determine the asymptotics of related $q$-Painlev\'e equations.
Comment: 33 pages, no figures
نوع الوثيقة: Working Paper
DOI: 10.1088/1361-6544/acdbb3
URL الوصول: http://arxiv.org/abs/2211.12658
رقم الانضمام: edsarx.2211.12658
قاعدة البيانات: arXiv
الوصف
DOI:10.1088/1361-6544/acdbb3