Convergence in distribution of the product of random variables from an independent sample on a compact algebraic group

التفاصيل البيبلوغرافية
العنوان: Convergence in distribution of the product of random variables from an independent sample on a compact algebraic group
المؤلفون: Styrt, O. G.
سنة النشر: 2022
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Probability, Mathematics - Algebraic Geometry, 14L30, 20G20, 20P05, 22C05, 22E47, 28C10, 60A10, 60B15
الوصف: An equivalent condition for the product of elements of an independent random sample on a compact algebraic group converging in distribution to some random variable as the sample size increases is obtained. Namely, a limit distribution exists and is uniform on the support of the parent distribution if a random variable with such a distribution does not belong with the unit probability to any non-trivial coset over an algebraic subgroup that lies in its normalizer; otherwise, it does not exist.
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2211.10071
رقم الانضمام: edsarx.2211.10071
قاعدة البيانات: arXiv