Non-relativistic string monodromies

التفاصيل البيبلوغرافية
العنوان: Non-relativistic string monodromies
المؤلفون: Fontanella, Andrea, García, Juan Miguel Nieto, Sax, Olof Ohlsson
سنة النشر: 2022
المجموعة: High Energy Physics - Theory
مصطلحات موضوعية: High Energy Physics - Theory
الوصف: Spectral curve methods proved to be powerful techniques in the context of relativistic integrable string theories, since they allow to derive the semiclassical spectrum from the minimal knowledge of a Lax pair and a classical string solution. In this paper we initiate the study of the spectral curve for non-relativistic strings in AdS$_5\times S^5$. First we show that for string solutions whose Lax connection is independent of $\sigma$, the eigenvalues of the monodromy matrix do not have any spectral parameter dependence. We remark that this particular behaviour also appears for relativistic strings in flat space. Second, for some simple non-relativistic string solutions where the path ordered exponential of the Lax connection can be computed, we show that the monodromy matrix is either diagonalisable with quasi-momenta independent of the spectral parameter, or non-diagonalisable. For the latter case, we propose a notion of generalised quasi-momenta, based on maximal abelian subalgebras, which retain a dependence on the spectral parameter.
Comment: 20 pages
نوع الوثيقة: Working Paper
DOI: 10.1007/JHEP01(2023)165
URL الوصول: http://arxiv.org/abs/2211.04479
رقم الانضمام: edsarx.2211.04479
قاعدة البيانات: arXiv